(* This is a minimal working example for Project 3, which asks us to analyze the level sets of a particular surface as well as the orthogonal trajectories. Here I work out the example for $z=x y$, starting with a 3D plot. *)

```
Plot3D[x*y, {x, -4, 4}, {y, -4, 4}]
```


(* Now for the level sets, which are hyperbolas given by $x y=$ constant. *)
ContourPlot $[x * y,\{x,-4,4\},\{y,-4,4\}]$


```
(* Next the orthogonal trajectories. The corresponding ODE is
    Y'(t) / x'(t) = F_Y / F_x = x(t) / Y(t)
        This is separable. Rearranging as
        Y y' - x x' = 0
            and integrating gives us the curves }\mp@subsup{y}{}{\wedge}2-\mp@subsup{x}{}{\wedge}2=constant
            I plotted the contours as well as a lot of curves for various
        initial conditions. *)
ContourPlot[y^2 - x^2, {x, -4, 4}, {y, - 4, 4}]
```


(* And now some curves for both level sets and orthogonal trajectories. Notice that curves meet at right angles only, which is part of the definition of "orthogonal." *)
$\operatorname{Plot}\left[\left\{1 / x, 2 / x, 3 / x, 4 / x, \operatorname{Sqrt}\left[x^{\wedge} 2\right], \operatorname{Sqrt}\left[x^{\wedge} 2-1\right], \operatorname{Sqrt}\left[x^{\wedge} 2-2\right]\right.\right.$, $\left.\operatorname{Sqrt}\left[x^{\wedge} 2-7\right], \operatorname{Sqrt}\left[x^{\wedge} 2+1\right], \operatorname{Sqrt}\left[x^{\wedge} 2+3\right], \operatorname{Sqrt}\left[x^{\wedge} 2+7\right]\right\}$, $\{x, 0,4\}$, PlotRange $\rightarrow\{\{0,4\},\{0,4\}\}]$

