(* This is a minimal working example for Project 3, which asks us to analyze the level sets of a particular surface as well as the orthogonal trajectories. Here I work out the example for z = xy, starting with a 3D plot. *)

 $Plot3D[x * y, \{x, -4, 4\}, \{y, -4, 4\}]$

(* Now for the level sets, which are hyperbolas given by xy = constant. *) ContourPlot[x * y, {x, -4, 4}, {y, -4, 4}]

(* Next the orthogonal trajectories. The corresponding ODE is
y'(t) / x'(t) = F_y / F_x = x(t) / y(t)
This is separable. Rearranging as
y y' - x x' = 0
and integrating gives us the curves y^2 - x^2 = constant.
I plotted the contours as well as a lot of curves for various

initial conditions. *)

(* And now some curves for both level sets and orthogonal trajectories. Notice
that curves meet at right angles only, which is part of the definition of
"orthogonal." *)

Plot[{1/x, 2/x, 3/x, 4/x, Sqrt[x^2], Sqrt[x^2 - 1], Sqrt[x^2 - 2], Sqrt[x^2 - 7], Sqrt[x^2 + 1], Sqrt[x^2 + 3], Sqrt[x^2 + 7]}, {x, 0, 4}, PlotRange \rightarrow {{0, 4}, {0, 4}]